# Advanced Power Reactors in Korea

May 17, 2017

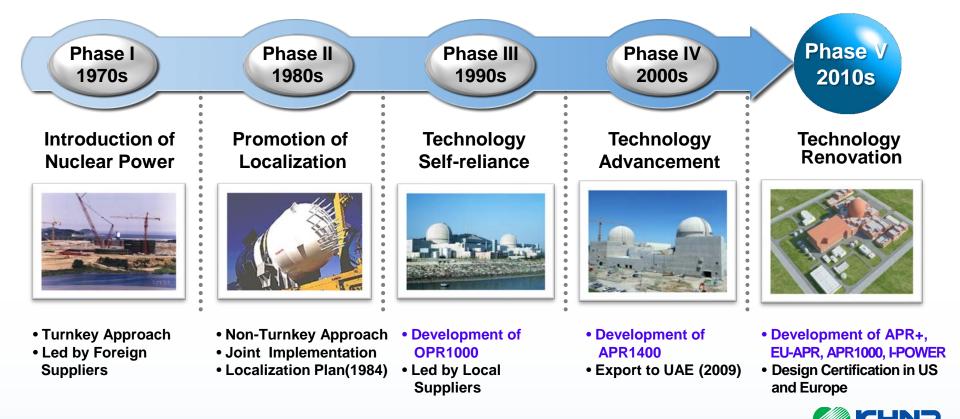
#### Yong Soo Kim







- **2** European Advanced Power Reactor (EU-APR)
- **3** Advanced Power Reactor 1000 (APR1000)
- 4 Major Advanced Design Features for EU-APR/APR1000
- 5 Why EU-APR & APR000 are Proven Designs





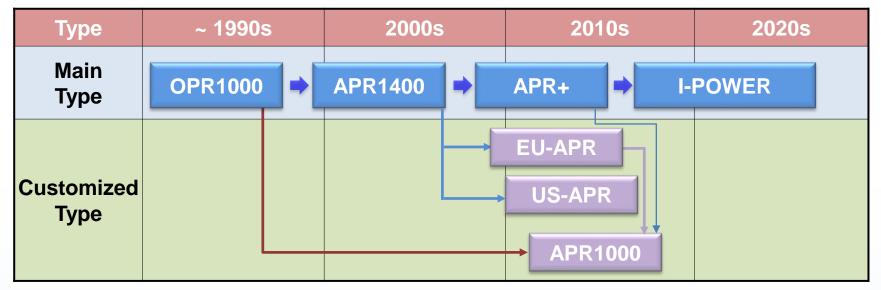

## Introduction

## **History of Nuclear Rector Development in Korea**

- Continual construction of NPPs after introducing the first unit in 1971
  - 25 operating units, 7 units in Korea & 4 units in UAE under construction
- In addition, advanced reactors has been developed and the APR1400 customized designs assessed for Design Certification in USA & Europe



## **Strategy for Advanced Reactor Development**


#### Short-term strategy

- Evolutionary development of advanced reactors and demonstrating their performance through domestic construction & operation : APR1400, APR+
- Performing customized engineering for advanced reactors to comply with market demands in capacity & regulation : EU-APR, APR1000, US-APR1400

#### Long-term strategy

Revolutionary development to improve NPP safety innovatively : I-POWER

#### Roadmap of Advanced Reactor Development





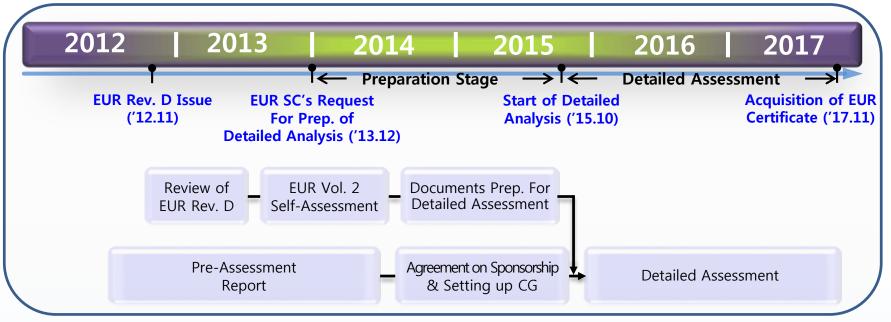


## **Technical Background of EU-APR**

- APR1400 developed to fully comply with US regulations for ALWR and EPRI utility requirements
  - 1 operating unit, 7 units in Korea & 4 units in UAE under construction
- EU-APR customized for Europe based on the reference plant (SKN 3&4) design
  - Incorporating EUR Rev. D, IAEA SSR-2/1, WENRA requirements, and recommendations of EU Stress Tests






## **Comparison of APR1400 Series Designs**

| Parameters                                         |           | SKN 3&4                                        | UAE                                                 | NRC-DC                                              | EU-APR                                      |
|----------------------------------------------------|-----------|------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------|
| Design Criteria Base                               |           | 10CFR, NRC RG                                  | 10CFR, NRC RG                                       | 10CFR, NRC RG                                       | IAEA, WENRA, EUR                            |
| Metrication                                        |           | British                                        | British                                             | British                                             | SI                                          |
| Frequency                                          |           | 60 Hz                                          | 50 Hz                                               | 60 Hz                                               | 50 Hz                                       |
| Codes<br>& Stds                                    | Mech.     | ASME                                           | ASME                                                | ASME                                                | ASME, EN                                    |
|                                                    | Elec./I&C | IEEE                                           | IEEE                                                | IEEE                                                | IEC                                         |
|                                                    | QA        | ASME NQA-1                                     | ASME NQA-1                                          | ASME NQA-1                                          | IAEA GS-R-3, ISO                            |
| Acceptance Criteria<br>for limiting<br>DBC(LBLOCA) |           | 250 mSv/2hr<br>(TID-14844)                     | 250 mSv/2hr<br>(TID-14844)                          | 250 mSv/2hr<br>(TID-14844)                          | 5 mSv<br>(RST)                              |
| Redundancy of<br>Safety Systems                    |           | Mech. 4-train<br>Elec. 2-train                 | Mech. 4-train<br>Elec. 2-train                      | Mech. 4-train<br>Elec. 4-train                      | Mech. 4-train<br>Elec. 4-train              |
| Aircraft Crash<br>Protection Design                |           | Exclusion due<br>to low APC<br>Probability     | Reinforced<br>Primary<br>Containment &<br>Aux. Bldg | Reinforced<br>Primary<br>Containment &<br>Aux. Bldg | Double Containment,<br>Reinforced Aux. Bldg |
| Severe Accident<br>Mitigation Systems              |           | SAs Dedicated<br>Sys. + DBC<br>Mitigation Sys. | SAs Dedicated<br>Sys. + DBC<br>Mitigation Sys.      | SAs Dedicated<br>Sys. + DBC<br>Mitigation Sys.      | Dedicated Systems<br>for SAs                |
| I&C Architecture                                   |           | 2-platform                                     | 2-platform                                          | 2-platform                                          | 3-platform                                  |
|                                                    |           |                                                |                                                     |                                                     |                                             |

**KHNP** 

## **EUR Certification Project of EU-APR**

- To establish the cornerstone for EU-APR to enter into the European market through obtaining EUR Certificate in 2017
  - Applied to the EUR assessment on December 2011 and passed the preliminary assessment stage on December 2013
  - Detailed assessment was successfully finished this May and Certification to be issued on November 2017








## **Technical Background of APR1000**

#### OPR1000 developed by combining CE designs of ANO and PVNGS

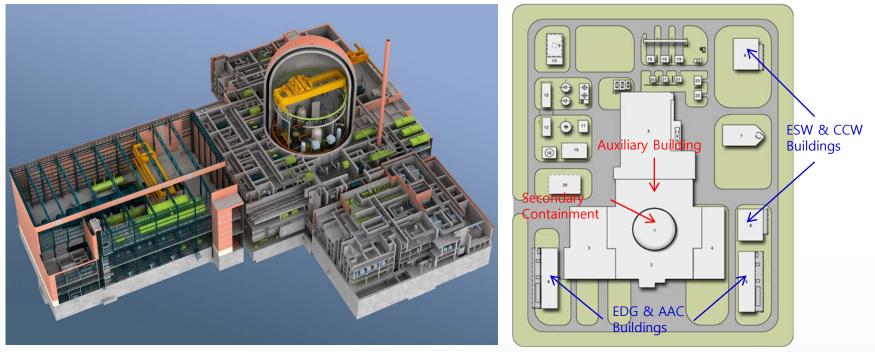
- 12 units are operating in Korea from 1995
- APR1000 is the customized design of OPR1000 for Europe by adopting Advanced Design Features of EU-APR and APR+
  - Sep. 2014 ~ Sep. 2015 : Completion of concept design development
  - Aug. 2016 ~ Aug. 2018 : Developing the basic design of APR1000 NI





## Comparison of OPR1000 & APR1000

| Ра                                              | rameters                     | OPR1000(SWN 1&2)                            | APR1000                                     |  |
|-------------------------------------------------|------------------------------|---------------------------------------------|---------------------------------------------|--|
| Desigr                                          | n Criteria Base              | 10CFR, NRC RG                               | IAEA, WENRA, EUR                            |  |
| М                                               | etrication                   | British                                     | SI                                          |  |
|                                                 | T/G                          | 1,800 rpm, 60 Hz (GE)                       | 3,600 rpm, 50 Hz (Doosan-Skoda)             |  |
| Codes &<br>Stds                                 | Mech.                        | ASME                                        | ASME, EN                                    |  |
|                                                 | Elec./I&C                    | IEEE                                        | IEC                                         |  |
|                                                 | QA                           | ASME NQA-1                                  | IAEA GS-R-3, ISO                            |  |
| Acceptance Criteria for limiting<br>DBC(LBLOCA) |                              | 250 mSv/2hr<br>(TID-14844)                  | 5 mSv<br>(RST)                              |  |
| Redundancy                                      | y of Safety Systems          | Mech. 2-train<br>Elec. 2-train              | Mech. 4-train<br>Elec. 4-train              |  |
| Aircraft Cras                                   | h Protection Design          | Exclusion due to low APC<br>Probability     | Double Containment,<br>Reinforced Aux. Bldg |  |
|                                                 | cident Mitigation<br>Systems | SAs Dedicated Sys. + DBC<br>Mitigation Sys. | Dedicated Systems for SAs                   |  |
| I&                                              | C Design                     | Analog                                      | Fully Digital, 3-platform                   |  |
|                                                 |                              |                                             |                                             |  |


**KHNP** 



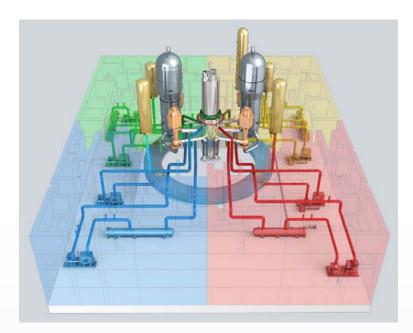
## Major Advanced Design Features for EU-APR & APR1000

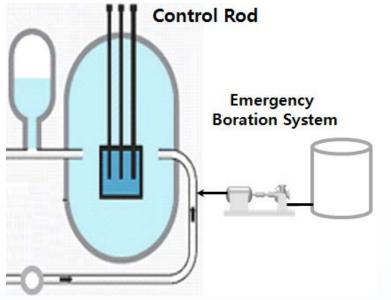
## **Building and Structure Design**

- Secondary containment and reinforced or physically separated arrangement of safety buildings against intentional airplane crash
- Stack to monitor discharged gas in the integrated manner and to enhance dispersion of discharged gas






## **Safety System Design**

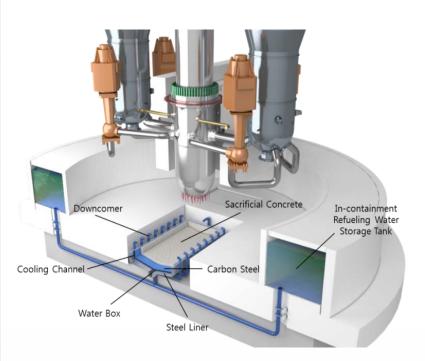

#### Redundancy

- N+2 Design : SC-2 systems to mitigate DBC 3 & 4 accidents
- N+1 Design : SC-3 systems to mitigate DBC 2, DEC and Severe Accidents

#### Diversity

Equipping with system or component level alternative measures against
CCFs of systems performing safety functions in the event of DBC 2 & 3

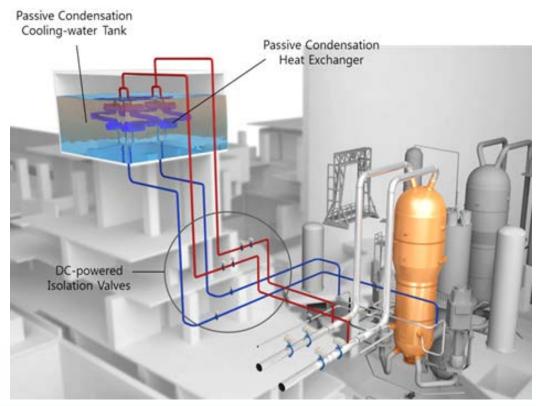







#### **Dedicated Severe Accident Mitigation System**

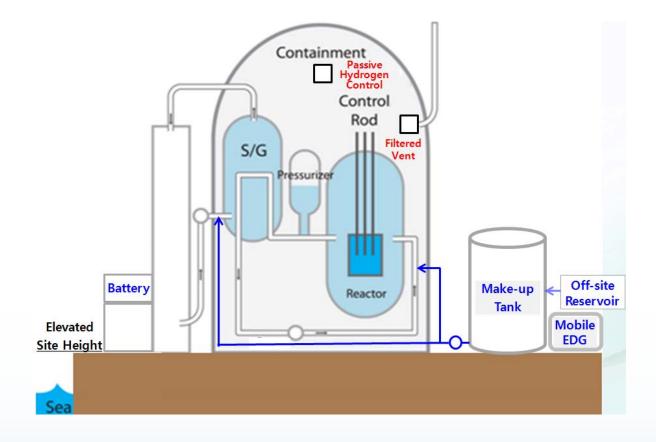
SAs dedicated mitigation systems to preserve the containment integrity independent of systems for Design Basis Conditions


| System                                             | Function                                                                                           |  |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| Passive Corium<br>Cooling System                   | Preventing interaction between<br>molten core and pressure-bearing<br>materials of the containment |  |
| Emergency<br>Reactor<br>Depressurization<br>System | Preventing high pressure molten ejection                                                           |  |
| Containment<br>Spray System                        | Preventing containment over-<br>pressurization                                                     |  |
| Passive<br>Hydrogen<br>Control System              | Maintaining hydrogen concentration in containment below 10 v/o                                     |  |
| Instrument<br>System                               | Monitoring status of plant condition                                                               |  |
| Electrical<br>System                               | Supplying power to SAs dedicated systems by using battery and AACs                                 |  |





## **Passive Aux Feedwater System(PAFS)**

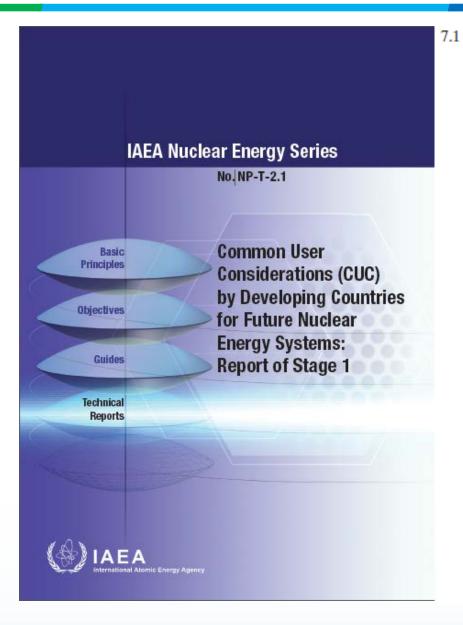

- Passive safety feature applied to APR1000, completely substituting conventional active Aux-Feedwater System(AFWS)
  - Improving plant safety through core residual heat removal using natural force
  - Two independent trains, each train can remove 100% core residual heat
  - System initiation valve supplied from battery for at least 72 hours in the extremely rare event such as Fukushima Accident





#### **Counter-Measures for Extremely Rare Events**

- Reinforced waterproof function against external flooding
- Protection designs against loss of electrical power & ultimate heat sink
  - External injection path for emergency cooling of RCS, SG and SFP
  - Mobile generator, capacity-reinforced and flood-protected batteries








## Why EU-APR & APR1000 are Proven Designs

## **Definition of Proven Design in IAEA**



Proven technology

- 7.1.1 Proven technology should include overall nuclear power plant systems and elements. The elements should include components, plant structures, design and analysis techniques, maintainability and operability features and construction techniques.
- 7.1.2 The provenness of overall nuclear power plant systems should be demonstrated through several years of operation of similar nuclear power plants as a commercial plant with a good operational record.
- 7.1.3 The provenness of the elements as defined in 7.1.1 should be demonstrated through one or more of the following:

Several years of operation in existing nuclear power plant;

Full or part scale testing facilities;

Several years of operation in other applicable industries such as fossil power and process industries.

- 7.1.4 The supplier should review existing databases of operating experience to identify both positive experience as well as causes of significant events and unplanned outages, and incorporate appropriate features in the nuclear power plant design.
- 7.1.5 The reactor system should have been licensed or should be licensable in the country of system origin and the licensing information should be made available.



#### **Performance of Reference Plant**

#### **IAEA NP-T-2.1, 7.1.2**

 The provenness of overall nuclear power plant systems should be demonstrated through several years of operation of similar nuclear power plants as a commercial plant with a good operational record.

#### EU-APR

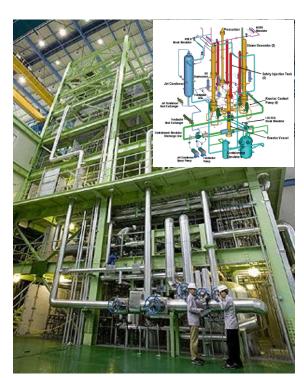
- The reference plant, SKN #3, has been operated without any transient such as unplanned trip after entering commercial operation on Feb. 2017
- Other APR1400 constructions are successfully performed in Korea and UAE

#### APR1000

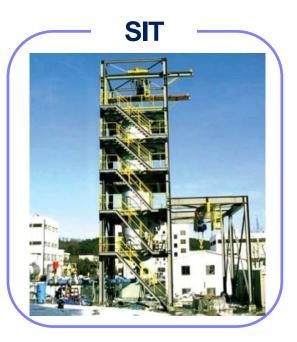
- The reference plant, SWN #2, has been operated without any operation problem after entering commercial operation on Jul. 2015
- 12 OPR1400 plants are operated with greater than 85% of availability



## **Verification Tests for Newly Adopted Designs**


#### **IAEA NP-T-2.1**, 7.1.3

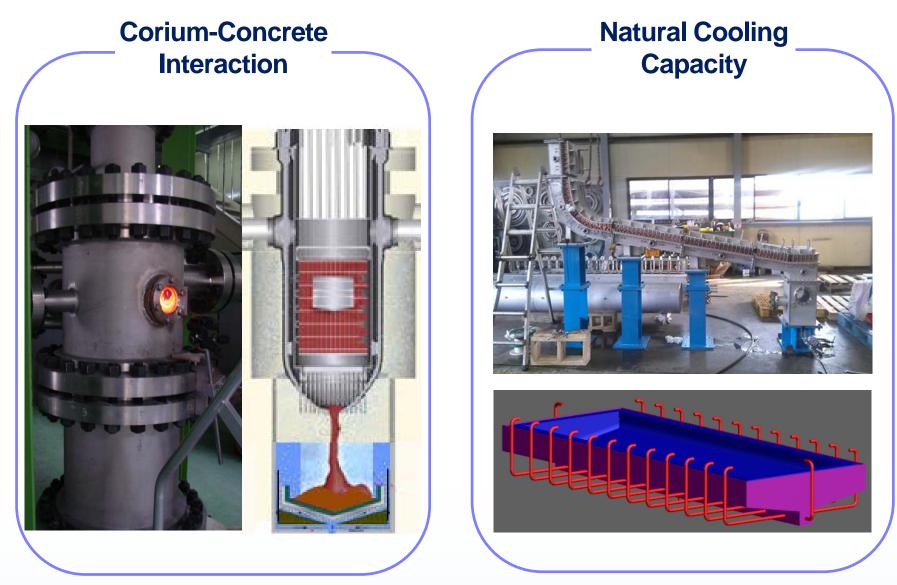
- The provenness of the elements as defined in 7.1.1 should be demonstrated through one or more of the following:
  - Several years of operation in existing nuclear power plant;
  - Full or part scale testing facilities;
  - Several years of operation in other applicable industries such as fossil power and process industries.




#### **Verification Tests for Safety Injection System**

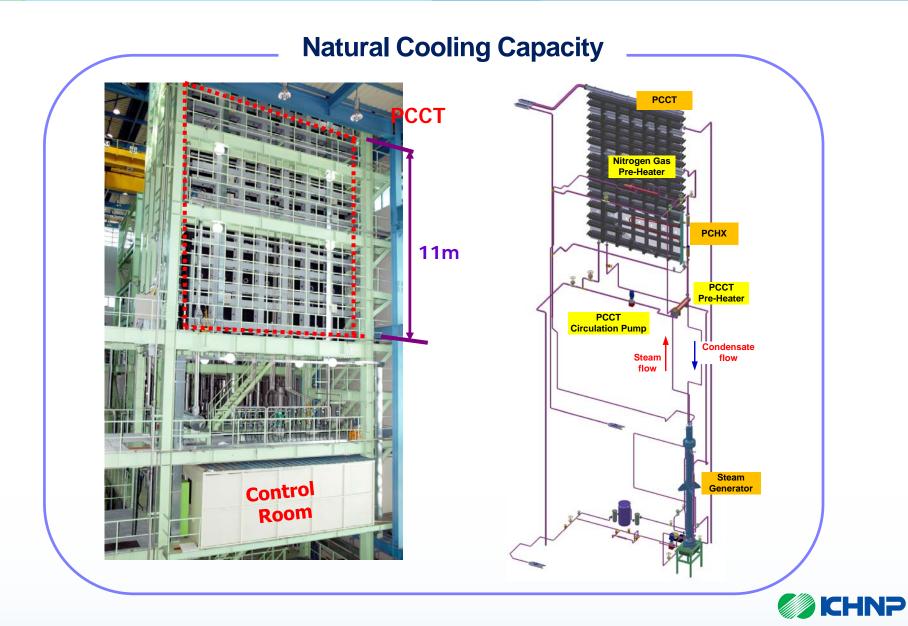





Integral Loop Test (ATLAS)








#### **Verification Tests for Core Catcher(PECS)**





#### **Verification Tests for PAFS**





#### **Closing Remarks**

- EU-APR and APR1000 are proven designs to satisfy the customer's demands regarding capacity and applied Codes & Standards
- On-time construction and delivery based on the experience and know-how accumulated through continuous construction and operation of NPPs for the past 40 years
- Technical support through developing advanced technologies to enhance the plant performance
- Continual effort to develop more secure, reliable, and economic advanced reactor



# THANK YOU

